RBI-Solutions blog

De rol van data platform engineer

Organisaties vertrouwen steeds meer op data om strategische beslissingen te nemen. Maar zonder een sterke data-infrastructuur blijft waardevolle data onbenut. Een Data Platform Engineer speelt een essentiële rol in het opzetten van deze infrastructuur. Van het ontwerpen van schaalbare data-architecturen tot het bouwen van robuuste data-pipelines – deze engineers zorgen ervoor dat data efficiënt, bruikbaar en veilig is. Vandaag een post over wat deze rol precies inhoudt.

Een Data Platform Engineer speelt een cruciale rol in het ontwerpen, bouwen en onderhouden van robuuste data-infrastructuren die organisaties in staat stellen om effectief data te verzamelen, op te slaan en te analyseren. Hierdoor wordt data uit diverse bronnen op een veilige en efficiënte manier toegankelijk voor analyse en rapportage.

Data Platform Engineers ontwerpen, bouwen en onderhouden de infrastructuren die nodig zijn om data uit diverse bronnen veilig en efficiënt op te slaan, te verwerken en te analyseren. De belangrijkste taken die een Data Platform Engineer hiervoor inzet, zijn:

  • Ontwerpen en implementeren van data-architecturen: Het creëren van schaalbare en betrouwbare data-oplossingen die voldoen aan de behoeften van de organisatie.
  • Ontwikkelen van data-pipelines: Het bouwen van geautomatiseerde processen voor het verzamelen, verwerken en opslaan van data uit verschillende bronnen.
  • Beheren van data-opslagoplossingen: Het selecteren en onderhouden van geschikte databases en opslagtechnologieën om data efficiënt en veilig op te slaan.
  • Zorgen voor data-integriteit en -beveiliging: Het implementeren van maatregelen om de nauwkeurigheid, consistentie en veiligheid van data te waarborgen.
  • Samenwerken met andere teams: Nauwe samenwerking met stakeholders om ervoor te zorgen dat de data-infrastructuur voldoet aan de analytische behoeften van de organisatie.

Voor deze functie is brede ervaring noodzakelijk op het gebied van dataplatforms, tools & technieken, waaronder ervaring met het opzetten en ontwikkelen van data producten, data platformen en het inrichten van data pipelines en CI/CD in Cloud-omgevingen (Azure of AWS) binnen enterprise omgevingen. Daarnaast heeft een Data Platform Engineer kennis van -en ervaring met- een breed pakket van tools en technieken zoals Azure SQL Server, Databricks, Snowflake, Glue, Matillion, Azure Data Factory, SSIS, Python, Fabric en Power BI.

Inzet van de expertise van een Data Platform Engineer biedt teams en projecten aanzienlijke voordelen. Deze professional is essentieel voor het ontwerpen, bouwen en onderhouden van robuuste data-infrastructuren die veilige en efficiënte toegang tot data mogelijk maken. Dit stelt organisaties in staat om data uit verschillende bronnen effectief te verzamelen, op te slaan en te analyseren voor rapportage en besluitvorming.

Kortom, een Data Platform Engineer is essentieel voor het bouwen van een sterk datafundament, waardoor teams en projecten data effectief kunnen benutten voor strategische besluitvorming en innovatie.

Geïnteresseerd geworden om als Data Platform Engineer en je kennis en knowhow in te zetten bij innovatieve klanten van RBI? Laat het ons weten: https://rbi-solutions.nl/data-platform-engineer/

Lees verder over data en de diensten van RBI-Solutions in deze blog's:

Metagegevens als motor: hoe gebruik van information_schema je dataplatform slimmer kan maken

Metagegevens als motor: hoe gebruik van information_schema je dataplatform slimmer kan maken

Hopelijk weet iedereen die met databases werkt van het bestaan van standaard metagegevens waarmee er gemakkelijk inzicht verkregen kan worden over de structuur, data en opzet van de database. Ook voor dataplatforms zijn deze objecten enorm waardevol. Toch wordt het potentieel van metagegevens nog vaak onderschat, terwijl vrijwel elke (moderne) relationele database, van PostgreSQL tot Snowflake, een krachtig en vaak onderbenut startpunt biedt in de vorm van information_schema.

In deze blog duiken we dieper in hoe metagegevens via information_schema je dataplatform slimmer, transparanter en beheersbaarder maken. Voor zowel data engineers die pipelines bouwen, als analisten die vertrouwen op stabiele datasets, bieden deze metagegevens enorme voordelen. Van automatisch documenteren tot het voorkomen van incidenten: wie information_schema goed gebruikt, bouwt een robuuster platform.

Van tijd naar trigger: De weg naar een event-driven data architectuur

Van tijd naar trigger: De weg naar een event-driven data architectuur

Sinds het begin van het gebruik van Business Intelligence hebben organisaties vertrouwd op periodieke dataverwerking, de zogenaamde ’batch jobs’ die elke nacht draaien. Sindsdien is de behoefte aan snelheid, flexibiliteit en realtime inzichten enorm toegenomen. Die behoefte zorgt dan ook voor een fundamentele verschuiving in hoe we data-architecturen ontwerpen: weg van batch processen, op weg naar een event-driven benadering.

Maar wat betekent dat eigenlijk: ’event-driven’? En waarom zou je hier als data engineer, analist, data scientist of business gebruiker wakker van moeten liggen? In deze blog duiken we in de wereld van event-driven data-architecturen, hun voordelen, uitdagingen, en de tools die deze transitie mogelijk maken.

DataOps, DevOps en MLOps: Oude wijn in nieuwe zakken of écht anders?

DataOps, DevOps en MLOps: Oude wijn in nieuwe zakken of écht anders?

In een data gedreven organisatie vliegen de samenwerkingstermen je om de oren: DevOps, DataOps, MLOps. Deze drie termen, die inderdaad erg hetzelfde klinken (en door sommige organisaties ingevuld worden door een beheerder in een ontwikkelteam te zetten), verschillen in de praktijk aanzienlijk in toepassing, focus en doel. Voor wie dagelijks werkt met data of systemen die op data drijven, is het essentieel om deze termen niet alleen te kennen, maar ook te begrijpen wat ze betekenen en hoe ze zich tot elkaar verhouden. Daar nemen we jullie in deze blog dan ook in mee.

INTERVIEW MET DATA ENGINEER/BI CONSULTANT Said Saoud

INTERVIEW MET DATA ENGINEER/BI CONSULTANT Said Saoud

Wat begon met een goed gesprek en een flinke dosis enthousiasme, groeide uit tot een veelzijdige carrière in data engineering bij RBI. In dit interview deelt Said Saoud zijn reis bij RBI: hoe hij begon, waar hij aan werkt en waarom hij zich thuis voelt in de wereld van data engineering en BI. Benieuwd naar zijn ervaringen, tools en visie op de toekomst van data? Lees het hele verhaal in deze blogpost.

Data Science: Een eenmalig model of integratie in de dagelijkse operatie?

Data Science: Een eenmalig model of integratie in de dagelijkse operatie?

In veel organisaties is data science inmiddels geen onbekende meer. Data scientists bouwen geavanceerde voorspellende modellen, werken met machine learning en experimenteren met AI om waarde te halen uit grote hoeveelheden data. Er zit echter vaak een kloof tussen het bouwen van een model en het daadwerkelijk creëren van impact in de dagelijkse operatie.

Wat betekent de overname van Informatica door Salesforce voor data en AI?

Wat betekent de overname van Informatica door Salesforce voor data en AI?

Salesforce heeft aangekondigd dat het Informatica overneemt voor zo’n $8 miljard. Wat lijkt op een strategische fusie tussen twee softwaregiganten, is in werkelijkheid veel meer dan dat.
Deze overname heeft directe impact op hoe organisaties omgaan met datakwaliteit, governance en AI-adoptie. Het is een duidelijk signaal: zonder betrouwbare, goed geïntegreerde data, geen succesvolle AI. In onze nieuwste blog geven wij een analyse van deze ontwikkeling en leggen wij uit wat dit betekent voor jouw datastrategie.

Big Bang of stapsgewijs? De kunst van datamigraties

Big Bang of stapsgewijs? De kunst van datamigraties

Datamigraties lijken op het eerste gezicht slechts een technische randvoorwaarde, maar zijn in werkelijkheid een strategisch en risicovol proces. Uiteraard willen bedrijven de data die ze al hebben weer terugzien in de nieuwe applicatie. Het klinkt misschien als een simpele verhuizing, maar bij een datamigratie komt een hoop kijken. Je hebt immers niet alleen te maken met de twee systemen waar de data uitkomt, maar ook met de kritische processen die erop draaien. Denk aan orderverwerking, voorraadbeheer of klantcommunicatie.

Een slechte aanpak kan zorgen voor kostbare downtime, verstoringen in processen of zelfs verlies van klantvertrouwen. Organisaties staan vaak voor de keuze tussen twee migratiestrategieën: de ‘big bang’-aanpak of een gefaseerde overgang.
Welke kies je en waarom? We nemen je mee in de afwegingen.

Van Inzicht naar Data gedreven: DE SPRONG van AWS Data Warehouse naar Data Lakehouse

Van Inzicht naar Data gedreven: DE SPRONG van AWS Data Warehouse naar Data Lakehouse

Veel organisaties vertrouwen op hun data warehouse voor analyse en besluitvorming. Maar data is allang niet meer alleen gestructureerd: e-mails, Excel-bestanden, afbeeldingen en sensordata vormen inmiddels het grootste deel. En daar zijn traditionele warehouses niet op gebouwd.
De oplossing? Een Data Lakehouse: schaalbaar, flexibel én kostenefficiënt – zonder de betrouwbaarheid van een warehouse te verliezen. Maar hoe zet je die stap als je huidige omgeving op AWS draait? En hoe voorkom je vendor lock-in?

Zo begin je vandaag nog met Fabric

Zo begin je vandaag nog met Fabric

Microsoft Fabric is niet zo maar wéér een tool om iets te doen met je data. Het is een platformshift. Een alles-in-één oplossing die data-engineering toegankelijker en resultaatgerichter maakt. Je bent minder tijd kwijt aan de infrastructuur en hebt meer tijd om echt impact te maken. Het andere grote voordeel: Automatisering, data visualisatie en data governance zitten er vanaf dag één ingebakken.

Gebruik de gratis 60-dagen trial. Test het: één bron, één flow, één dashboard. Meer heb je niet nodig om te zien of het werkt voor jou.

Encryptie-by-Design, het veilig en verantwoord beheren van persoonsgegevens en gevoelige data

Encryptie-by-Design, het veilig en verantwoord beheren van persoonsgegevens en gevoelige data

Als data engineer of manager weet je hoe belangrijk het is om persoonsgegevens veilig te verwerken, vooral met de AVG op de achtergrond. Bij RBI hebben we Encryptie-by-Design als uitgangspunt toegepast tijdens verschillende projecten: alle persoonsgegevens worden standaard versleuteld bij het ontsluiten van data.
🔐 De sleutel? Alleen decryptie wanneer het echt noodzakelijk is. Dit minimaliseert risico’s en zorgt dat je dataplatform compliant blijft.

Praten met je data, toepassing van AI om inzichten te halen uit je eigen data

Praten met je data, toepassing van AI om inzichten te halen uit je eigen data

Data is er genoeg. Maar hoe zorg je ervoor dat de juiste mensen de juiste informatie to zich kunnen nemen?
Bij RBI onderzochten we hoe AI-selfserviceplatformen medewerkers kunnen helpen om zelf inzichten uit data te halen. Denk aan een chatbot of custom GPT waarmee je team direct met hun data kunnen ‘praten’. De vraag die wij onszelf stelden: hoe kun je een self-serviceplatform voor datavragen implementeren?

“Blijf nieuwsgierig, zoek je eigen pad en sta open om te blijven leren.”

“Blijf nieuwsgierig, zoek je eigen pad en sta open om te blijven leren.”

Dat is het advies van onze BI consultant Mark aan iedereen die de wereld van data in wil. Zelf begon hij drie jaar geleden bij RBI, waar hij via een traineeship uitgroeide tot Data engineer.

Zijn geheim? Vragen blijven stellen, goed om je heen kijken en gewoon beginnen.

Benieuwd naar zijn favoriete projecten, tools, en waarom hij zich bij RBI zo thuis voelt? Lees dan zijn verhaal hieronder.