RBI-Solutions blog

Data Science: Een eenmalig model of integratie in de dagelijkse operatie?

In veel organisaties is data science inmiddels geen onbekende meer. Data scientists bouwen geavanceerde voorspellende modellen, werken met machine learning en experimenteren met AI om waarde te halen uit grote hoeveelheden data. Er zit echter vaak een kloof tussen het bouwen van een model en het daadwerkelijk creëren van impact in de dagelijkse operatie.

De vraag is niet alleen of je goede modellen kunt maken, maar vooral hoe je ervoor zorgt dat die modellen ook echt gaan doen waarvoor ze zijn ontworpen: beslissingen verbeteren, processen versnellen en waarde toevoegen. Een model op zichzelf kan waardevol zijn, bijvoorbeeld als het draait in een Jupyter-notebook, maar de echte uitdaging ligt in de integratie ervan in operationele processen, systemen en beslissingsstructuren.

De stap van prototype naar productie

De overgang van prototype naar productie is een van de lastigste stappen binnen het data science-vakgebied. Het vraagt om modellen die automatisch draaien, real-time of batchgewijs data verwerken en input leveren aan systemen zoals CRM, ERP of klantgerichte applicaties. Een belangrijk obstakel is het verschil in werkwijze tussen data science-teams en DevOps- of IT-teams. Data scientists werken met tools als Python en notebooks, vaak lokaal, terwijl DevOps-teams opereren met andere standaarden zoals Docker, CI/CD-pipelines en Java-omgevingen. Het vereist samenwerking en het hanteren van gemeenschappelijke standaarden. De rolverdeling is daarbij cruciaal: laat data scientists modellen bouwen, en DevOps-teams zorgen voor robuust beheer en integratie.

MLOps en de rol van monitoring

Een oplossing voor dit spanningsveld is het toepassen van MLOps: een aanpak die machine learning combineert met principes uit softwareontwikkeling en operations. Tools zoals MLflow, Seldon Core of Amazon SageMaker helpen bij het beheren van modellen, versiebeheer, testen en deployment naar productieomgevingen. Monitoring is een essentieel onderdeel. Modellen kunnen door veranderend gedrag van klanten of marktomstandigheden in korte tijd minder goed presteren. Door monitoring en automatische alerts kun je tijdig ingrijpen of hertraining in gang zetten, zodat de betrouwbaarheid van het model behouden blijft.

Uitlegbaarheid, vertrouwen en adoptie

Naast techniek is ook de menselijke kant belangrijk. Operationele teams moeten begrijpen wat het model doet, waarom het bepaalde voorspellingen doet en hoe ze met die uitkomsten om moeten gaan. Zeker in sectoren als zorg, overheid of finance is uitlegbaarheid essentieel. Tools zoals SHAP of LIME maken voorspellingen inzichtelijk en helpen bij acceptatie. Een pragmatische aanpak om te starten met integratie is de inzet van een “human-in-the-loop”-oplossing. Het model doet aanbevelingen, maar de beslissing wordt genomen door een medewerker. Zo creëer je al waarde, terwijl je ruimte houdt voor leren en finetunen.

Van use case naar data-driven organisatie

Een goed voorbeeld komt uit de verzekeringsbranche. AI wordt daar gebruikt om schadeclaims automatisch te beoordelen. Door tekstherkenning en beeldanalyse kunnen eenvoudige claims razendsnel worden afgehandeld. Maar dat werkt alleen als het model goed geïntegreerd is in de operationele workflow, inclusief duidelijke fallback-mechanismen. We zien ook een trend richting real-time toepassingen, zoals aanbevelingssystemen of anomaly detection. Dit vraagt om infrastructuur voor streaming data, lage latency en robuuste schaalbaarheid. Tegelijkertijd groeit de standaardisatie van deployment via containerisatie (Docker) en orkestratie (Kubernetes).

Tot slot is het belangrijk om data science niet als een project te zien, maar als een capability. Echte impact ontstaat wanneer modellen leven binnen de organisatie: schaalbaar, uitlegbaar, goed ingebed in processen. De techniek is belangrijk, maar het succes zit in de implementatie. En die begint bij de vraag: hoe zorgen we ervoor dat ons model meedraait in het hart van de operatie?

Lees verder over data en de diensten van RBI-Solutions in deze blog's:

DataOps, DevOps en MLOps: Oude wijn in nieuwe zakken of écht anders?

DataOps, DevOps en MLOps: Oude wijn in nieuwe zakken of écht anders?

In een data gedreven organisatie vliegen de samenwerkingstermen je om de oren: DevOps, DataOps, MLOps. Deze drie termen, die inderdaad erg hetzelfde klinken (en door sommige organisaties ingevuld worden door een beheerder in een ontwikkelteam te zetten), verschillen in de praktijk aanzienlijk in toepassing, focus en doel. Voor wie dagelijks werkt met data of systemen die op data drijven, is het essentieel om deze termen niet alleen te kennen, maar ook te begrijpen wat ze betekenen en hoe ze zich tot elkaar verhouden. Daar nemen we jullie in deze blog dan ook in mee.

INTERVIEW MET DATA ENGINEER/BI CONSULTANT Said Saoud

INTERVIEW MET DATA ENGINEER/BI CONSULTANT Said Saoud

Wat begon met een goed gesprek en een flinke dosis enthousiasme, groeide uit tot een veelzijdige carrière in data engineering bij RBI. In dit interview deelt Said Saoud zijn reis bij RBI: hoe hij begon, waar hij aan werkt en waarom hij zich thuis voelt in de wereld van data engineering en BI. Benieuwd naar zijn ervaringen, tools en visie op de toekomst van data? Lees het hele verhaal in deze blogpost.

Wat betekent de overname van Informatica door Salesforce voor data en AI?

Wat betekent de overname van Informatica door Salesforce voor data en AI?

Salesforce heeft aangekondigd dat het Informatica overneemt voor zo’n $8 miljard. Wat lijkt op een strategische fusie tussen twee softwaregiganten, is in werkelijkheid veel meer dan dat.
Deze overname heeft directe impact op hoe organisaties omgaan met datakwaliteit, governance en AI-adoptie. Het is een duidelijk signaal: zonder betrouwbare, goed geïntegreerde data, geen succesvolle AI. In onze nieuwste blog geven wij een analyse van deze ontwikkeling en leggen wij uit wat dit betekent voor jouw datastrategie.

Big Bang of stapsgewijs? De kunst van datamigraties

Big Bang of stapsgewijs? De kunst van datamigraties

Datamigraties lijken op het eerste gezicht slechts een technische randvoorwaarde, maar zijn in werkelijkheid een strategisch en risicovol proces. Uiteraard willen bedrijven de data die ze al hebben weer terugzien in de nieuwe applicatie. Het klinkt misschien als een simpele verhuizing, maar bij een datamigratie komt een hoop kijken. Je hebt immers niet alleen te maken met de twee systemen waar de data uitkomt, maar ook met de kritische processen die erop draaien. Denk aan orderverwerking, voorraadbeheer of klantcommunicatie.

Een slechte aanpak kan zorgen voor kostbare downtime, verstoringen in processen of zelfs verlies van klantvertrouwen. Organisaties staan vaak voor de keuze tussen twee migratiestrategieën: de ‘big bang’-aanpak of een gefaseerde overgang.
Welke kies je en waarom? We nemen je mee in de afwegingen.

Van Inzicht naar Data gedreven: DE SPRONG van AWS Data Warehouse naar Data Lakehouse

Van Inzicht naar Data gedreven: DE SPRONG van AWS Data Warehouse naar Data Lakehouse

Veel organisaties vertrouwen op hun data warehouse voor analyse en besluitvorming. Maar data is allang niet meer alleen gestructureerd: e-mails, Excel-bestanden, afbeeldingen en sensordata vormen inmiddels het grootste deel. En daar zijn traditionele warehouses niet op gebouwd.
De oplossing? Een Data Lakehouse: schaalbaar, flexibel én kostenefficiënt – zonder de betrouwbaarheid van een warehouse te verliezen. Maar hoe zet je die stap als je huidige omgeving op AWS draait? En hoe voorkom je vendor lock-in?

Zo begin je vandaag nog met Fabric

Zo begin je vandaag nog met Fabric

Microsoft Fabric is niet zo maar wéér een tool om iets te doen met je data. Het is een platformshift. Een alles-in-één oplossing die data-engineering toegankelijker en resultaatgerichter maakt. Je bent minder tijd kwijt aan de infrastructuur en hebt meer tijd om echt impact te maken. Het andere grote voordeel: Automatisering, data visualisatie en data governance zitten er vanaf dag één ingebakken.

Gebruik de gratis 60-dagen trial. Test het: één bron, één flow, één dashboard. Meer heb je niet nodig om te zien of het werkt voor jou.

Encryptie-by-Design, het veilig en verantwoord beheren van persoonsgegevens en gevoelige data

Encryptie-by-Design, het veilig en verantwoord beheren van persoonsgegevens en gevoelige data

Als data engineer of manager weet je hoe belangrijk het is om persoonsgegevens veilig te verwerken, vooral met de AVG op de achtergrond. Bij RBI hebben we Encryptie-by-Design als uitgangspunt toegepast tijdens verschillende projecten: alle persoonsgegevens worden standaard versleuteld bij het ontsluiten van data.
🔐 De sleutel? Alleen decryptie wanneer het echt noodzakelijk is. Dit minimaliseert risico’s en zorgt dat je dataplatform compliant blijft.

Praten met je data, toepassing van AI om inzichten te halen uit je eigen data

Praten met je data, toepassing van AI om inzichten te halen uit je eigen data

Data is er genoeg. Maar hoe zorg je ervoor dat de juiste mensen de juiste informatie to zich kunnen nemen?
Bij RBI onderzochten we hoe AI-selfserviceplatformen medewerkers kunnen helpen om zelf inzichten uit data te halen. Denk aan een chatbot of custom GPT waarmee je team direct met hun data kunnen ‘praten’. De vraag die wij onszelf stelden: hoe kun je een self-serviceplatform voor datavragen implementeren?

“Blijf nieuwsgierig, zoek je eigen pad en sta open om te blijven leren.”

“Blijf nieuwsgierig, zoek je eigen pad en sta open om te blijven leren.”

Dat is het advies van onze BI consultant Mark aan iedereen die de wereld van data in wil. Zelf begon hij drie jaar geleden bij RBI, waar hij via een traineeship uitgroeide tot Data engineer.

Zijn geheim? Vragen blijven stellen, goed om je heen kijken en gewoon beginnen.

Benieuwd naar zijn favoriete projecten, tools, en waarom hij zich bij RBI zo thuis voelt? Lees dan zijn verhaal hieronder.

Employee 360° – Hoe goed ken jij je medewerkers écht?

Employee 360° – Hoe goed ken jij je medewerkers écht?

In de war for talent is het niet genoeg om alleen te werven — je moet ook je huidige medewerkers goed begrijpen én behouden. Een Employee 360° view bundelt versnipperde data tot één compleet beeld van je mensen: hun skills, prestaties, ambities en betrokkenheid. Zo zie je sneller wie klaar is voor de volgende stap, waar risico’s liggen en hoe je gericht kunt ondersteunen. Ontdek wat een Employee 360° voor jouw organisatie kan betekenen in deze blogpost.

Van een dagelijkse batch naar streaming analytics, wanneer is dit relevant?

Van een dagelijkse batch naar streaming analytics, wanneer is dit relevant?

In sectoren waar elke seconde telt – zoals de farmaceutische industrie – maakt streaming analytics het verschil. Door inzichtelijke real-time data is er sprake van minder verspilling, snellere interventie én hogere klanttevredenheid. In deze blogpost lees je over de voordelen van streaming analytics.

van ruwe data naar waardevolle inzichten –  een interview met wensi

van ruwe data naar waardevolle inzichten – een interview met wensi

Hoe transformeer je complexe data tot bruikbare inzichten die écht impact maken? Wensi Ai, Senior Data/BI Consultant bij RBI, deelt in dit interview zijn ervaring en visie op de wereld van data engineering én business intelligence.

Van het doorgronden van nieuwe sectoren tot het optimaliseren van batchprocessen—Wensi laat zien hoe strategische keuzes en slimme data-oplossingen het verschil maken. Zo wist hij de verwerkingstijd van een batchjob terug te brengen van 3 dagen naar 20 uur én verbeterde hij de nauwkeurigheid van een premieberekeningsmodel drastisch.