RBI-Solutions blog

Blijven leren = blijven groeien

Bij RBI Solutions geloven we dat kennis de sleutel is tot impactvolle data-oplossingen. Daarom blijven onze data consultants continu bijscholen en investeren we in certificeringen. Dit doen we niet alleen individueel, maar ook samen. Waarom? Omdat technologie en data nooit stilstaan. Door continu te leren, blijven we vooroplopen in de markt en leveren we de beste oplossingen voor onze klanten. Senior Data Engineer Jordi is vorig jaar gestart bij RBI Solutions. Hij legt uit wat zijn kijk is op leren en certificeren en hoe we daar ruimte voor bieden bij RBI.

“Het leuke aan de wereld van software en data is dat er altijd genoeg te leren is en er ontelbaar veel richtingen zijn waarin je jezelf kunt ontwikkelen.

Hoe leuk ik leren ook vind, er was een tijd dat ik bijna een allergische reactie kreeg van het woord certificaat. Je betaalt een smak geld, zit wellicht een paar uur fysiek op een cursusstoel (al dan niet wakker), en het “bewijs” is binnen. Zo was mijn beeld. Maar organisaties vragen, zeker aan consultants, toch om certificaten. Dan zal het toch niet volledig gebakken lucht zijn?

Het afgelopen jaar heb ik verschillende certificaten gehaald. Nu weet ik dat het (gelukkig) wel degelijk nodig is daar goed voor te studeren! Voor de meeste dan. Certificaten kunnen als gids dienen bij het leren en vormen een stok achter de deur. Bovendien krijg je, als je het goed doet, dat nostalgische gevoel van het halen van een examen/tentamen. Zie het ook als bewijs naar jezelf, mocht je gevoelig zijn voor het imposter syndrome. En zo heb ik de volgende certificaten behaald het afgelopen jaar.

DP-203 (data engineering op Azure)

Voor mij was dit een mooie manier om kennis te maken met Cloud computing en om data engineering jargon te rijmen met mijn eigen ervaring.

CKAD en CKA (Kubernetes certificaten)

Kennis van Kubernetes komt van pas bij het opleveren en beheren van moderne (maatwerk)oplossingen. Met deze hands-on examens gaat het niet om het onthouden van feiten; het gaat erom of je dingen voor elkaar kan krijgen in een live cluster. Het mooie aan Kubernetes vind ik dat het je helpt om minder afhankelijk te zijn van een Cloud aanbieder. Daarnaast heb je na deze examens een goed beeld van wat er bij komt kijken om oplossingen schaalbaar en hoog beschikbaar te maken.

CDMP Associate (Data Management)

Hierdoor heb ik een beter beeld gekregen van verschillende aspecten van data management zoals metagegevensmanagement en data governance. Het examen richt zich op een standaard referentiewerk (DMBOK 2). Kennis hiervan helpt je te kunnen verplaatsen in collega’s die zich vanuit een andere rol met data bezighouden. Het is makkelijker dezelfde taal te spreken.

PSM 1 (Scrum master)

Als liefhebber van agile werkwijzen met jaren ervaring in een scrumteam mocht dit certificaat niet heel spannend zijn en vooral bevestigen wat ik al weet. Dat was zo. Toch is het goed om dit vast te leggen door het behalen van een certificaat.

Bij RBI

Bij RBI krijg je veel ruimte om jezelf te ontwikkelen en om daarbij certificaten te halen. Zo kun je je eigen doelen stellen om te ontwikkelen in een richting die bij jou past. Die ruimte is er bewust doordeweeks, bij daglicht. Omdat leren nu eenmaal een onderdeel is van ons werk. We delen onderling ook regelmatig kennis uit, bijvoorbeeld door cursussen en workshops te geven. Het uitleggen helpt ook weer bij het versterken van je eigen kennis. “

Lees verder over data en de diensten van RBI-Solutions in deze blog's:

MCP: De nieuwe AI standaard

MCP: De nieuwe AI standaard

Een begrip dat je online steeds vaker tegenkomt binnen al de buzz rond AI is ‘MCP’; weer zo’n afkorting die voor heel veel mensen cryptisch klinkt. Binnen de AI wereld is het echter wel een heel belangrijke vooruitgang: standaardisatie. Het verbinden van AI met bestaande APIs biedt heel veel mogelijkheden. Echter bouwt elke organisatie hun oplossing net weer anders. De ene bot praat zo tegen een API, de andere weer anders, en voor je het weet heb je een kerkhof aan connectors. Het idee is goed, de uitvoering vaak rommelig. Dit is precies waar MCP om de hoek komt kijken.

AI Agents: meer dan een slimmere chatbot

AI Agents: meer dan een slimmere chatbot

De meeste mensen zien AI nog steeds als een soort papegaai die tekstjes en plaatjes maakt zodra je iets vraagt. Handig, maar ook best oppervlakkig. Sinds enige tijd is er echter ook iets nieuws in opkomst: ‘Agentic AI’. AI-agenten dus die autonoom te werk kunnen gaan.

In plaats van pure generatie, kunnen ze een probleem ontleden, stappen zetten richting een oplossing, hun eigen werk checken en zelf andere tools gebruiken. We stappen dus richting zelfstandig werkende oplossingen. Je kunt het bijna zien als een leger van volledig virtuele assistenten en stagiaires. Dit belooft veel maar, brengt zeker ook gevaren.

AutoML: Machine Learning op de automatische piloot?

AutoML: Machine Learning op de automatische piloot?

Geautomatiseerd Machine Learning ook wel ‘AutoML’ is het automatiseren van de tijdrovende, iteratieve taken bij het ontwikkelen van machine learning-modellen. Je laat als het ware het bouwen van de modellen aan de machines zelf over.

Voor een paar tientjes een model dat kan voorspellen welke klanten over een paar maanden gaan vertrekken. Klinkt een beetje te goed om waar te zijn. Dan heb je natuurlijk ook geen Data Scientists meer nodig, toch? Nou, er zitten uiteraard wel wat haken en ogen aan. De specialisten op het gebied van Machine Learning verdwijnen ook zeker niet zo maar. Even een stap terug dus.

Data mesh: principes en praktische implementatie

Data mesh: principes en praktische implementatie

Elk relatief groot bedrijf bestaat uit verschillende afdelingen, elk met zijn eigen vraagstukken. Op datagebied is dat niet anders: marketing wil weten hoe campagnes performen, operations wil de huidige voorraad kunnen inzien, finance bewaakt de cashflow en productontwikkeling volgt klantgedrag.

Datamigratie afgerond… en nu?

Datamigratie afgerond… en nu?

Binnen veel organisaties is een datamigratie een enorme mijlpaal. Maandenlang werk je toe naar dat ene moment waarop alle data succesvol is overgezet naar de nieuwe operationele applicatie. Tijdens dat migratietraject worden allerlei controles ingericht: validatieregels, datakwaliteits­checks en integriteitscontroles die ervoor zorgen dat iedere klant, transactie of productrecord correct wordt overgezet. In de praktijk zien we alleen dat die regels direct na de migratie verdwijnen uit beeld. Terwijl ze juist ook dan van grote waarde zijn.

Meggie over haar werk bij de klant

Meggie over haar werk bij de klant

Meggie van den Boom, data engineer bij RBI Solutions, werkt al anderhalf jaar als data consultant bij een financiële dienstverlener. Ze geeft ons vandaag een kijkje in hoe haar werkzaamheden binnen haar team bij de klant eruit zien.

Metadata: je geheime wapen voor observability & governance

Metadata: je geheime wapen voor observability & governance

Metadata voor observability en governance: verder dan information_schema
Een aantal weken geleden, wijdden we een blog aan het gebruik van metadata voor het slimmer ontwikkelen en onderhouden van dataplatforms. Metadata wordt helaas nog vaak gezien als het saaie bijproduct van data: een paar kolomnamen, datatypes en misschien een timestamp, maar in moderne dataplatformen is dat nog maar het topje van de ijsberg. Metadata kan, mits goed benut, een krachtig fundament vormen voor zowel observability als governance. Het kan helpen bij het opsporen van problemen, het begrijpen van datastromen, het garanderen van compliance en zelfs het optimaliseren van prestaties.

Data migratie test en validatiestrategieën: hoe je zeker weet dat je data klopt na een migratie

Data migratie test en validatiestrategieën: hoe je zeker weet dat je data klopt na een migratie

Data migraties zijn voor veel organisaties een uitdaging: je stapt over van een oud systeem naar een nieuw, je moderniseert je datawarehouse of je integreert een nieuw platform na een fusie. Ondanks dat het technisch ‘slechts’ het verplaatsen van data lijkt, komt er meer bij kijken om een goede datamigratie uit te voeren. Hoe weet je zeker dat de data na migratie nog klopt? Dat er niets verloren is gegaan, of erger nog: dat je geen subtiele fouten hebt geïntroduceerd die maanden later pas boven water komen?
In deze blog staan we stil bij test- en validatiestrategieën bij data migraties. We bespreken waarom het testen van een datamigratie fundamenteel anders is dan het testen van een standaard applicatie, welke technieken je kunt gebruiken om betrouwbaarheid te garanderen, en hoe je omgaat met de praktische uitdagingen die je onderweg tegenkomt.

Waarom AI en automatisering niet werken zonder goede data engineering

Waarom AI en automatisering niet werken zonder goede data engineering

AI is hot. Iedereen wil er iets mee. Van slimme voorspellingen tot volledige automatisering van bedrijfsprocessen; organisaties investeren massaal in artificial intelligence. Maar wie verder kijkt dan de hype, ziet dat veel AI-projecten stranden nog voordat ze echt waarde opleveren. Niet vanwege de modellen of de tooling, maar vanwege iets veel fundamentelers: de onderliggende data en hoe je ermee omgaat. Of specifieker: de data engineering erachter. Want zonder robuuste data-infrastructuur is AI net zo betrouwbaar als een kompas in een magneetveld. 

Data-APK: inzicht en zekerheid voor jouw bedrijfsdata

Data-APK: inzicht en zekerheid voor jouw bedrijfsdata

In een tijd waarin beslissingen steeds meer op data leunen, is het essentieel om zeker te weten dat die data klopt. Net als een auto die regelmatig een APK nodig heeft om veilig te blijven rijden, vraagt ook jouw bedrijfsdata om een periodieke check. Bij RBI Solutions noemen we dat de Data-APK: een slimme, laagdrempelige manier om jouw data in kaart te brengen, problemen te signaleren en waardevolle inzichten te bieden die jouw organisatie helpen sneller en beter beslissingen te nemen.

de transitie met Microsoft Fabric

de transitie met Microsoft Fabric

In veel MKB-organisaties is het verzamelen en rapporteren van data nog steeds een tijdrovende en foutgevoelige klus. Excel-bestanden circuleren overal, gegevens worden handmatig gecorrigeerd in verschillende systemen en rapportages worden met de hand bijgewerkt. Het gevolg is dat managers en analisten vaak worstelen met verouderde inzichten, inconsistente cijfers en een gebrek aan overzicht. Hierdoor duurt het langer voordat er goede beslissingen genomen kunnen worden en het vertrouwen in de data neemt af.

Een bekend probleem is dat data uit verschillende systemen, zoals een boekhoudpakket, CRM of HR-software, niet automatisch met elkaar verbonden zijn. Dit leidt tot dubbel werk, handmatige controles en fouten bij het overzetten van data. Denk bijvoorbeeld aan het handmatig aanpassen van uitzonderingen in BTW-tarieven of het dubbel moeten invoeren van klantgegevens. Deze werkwijze kost veel tijd en brengt risico’s met zich mee.

Metagegevens als motor: hoe gebruik van information_schema je dataplatform slimmer kan maken

Metagegevens als motor: hoe gebruik van information_schema je dataplatform slimmer kan maken

Hopelijk weet iedereen die met databases werkt van het bestaan van standaard metagegevens waarmee er gemakkelijk inzicht verkregen kan worden over de structuur, data en opzet van de database. Ook voor dataplatforms zijn deze objecten enorm waardevol. Toch wordt het potentieel van metagegevens nog vaak onderschat, terwijl vrijwel elke (moderne) relationele database, van PostgreSQL tot Snowflake, een krachtig en vaak onderbenut startpunt biedt in de vorm van information_schema.

In deze blog duiken we dieper in hoe metagegevens via information_schema je dataplatform slimmer, transparanter en beheersbaarder maken. Voor zowel data engineers die pipelines bouwen, als analisten die vertrouwen op stabiele datasets, bieden deze metagegevens enorme voordelen. Van automatisch documenteren tot het voorkomen van incidenten: wie information_schema goed gebruikt, bouwt een robuuster platform.