RBI-Solutions blog

Maak kennis met Sara, onze nieuwe Data Consultant!

Met veel plezier stellen we Sara Herrebout aan jullie voor, één van onze nieuwste collega’s bij RBI-Solutions. Sara heeft een achtergrond in Econometrie en werkte eerder als data-analist bij een energieleverancier. Inmiddels draait ze vol mee op haar opdracht bij InShared, samen met Mark Kronenberg, die hier begin dit jaar via ons is gestart. Samen werken ze aan de Duitse autoverzekeringspropositie. Omdat deze tak nog relatief jong is, ligt er veel ruimte om processen slimmer, schaalbaarder en efficiënter te maken. Dat is precies het soort uitdaging waar Sara energie van krijgt.

𝗪𝗮𝗮𝗿𝗼𝗺 𝗥𝗕𝗜?
Sara koos voor RBI omdat ze als consultant inhoudelijk impact wil maken en wil blijven groeien. Onze manier van werken met veel vrijheid, vertrouwen en ruimte voor ontwikkeling sluit daar perfect bij aan.

𝗘𝗻 𝘃𝗲𝗿𝗱𝗲𝗿 𝗼𝘃𝗲𝗿 𝗦𝗮𝗿𝗮:
Ze is vrolijk, verantwoordelijk en empathisch. Ze houdt van gezond koken, haar lunches trekken altijd de aandacht. Verder doet ze yoga en pilates, leest graag en maakt het liefst elk jaar een verre reis.

Welkom bij het team, Sara. We zijn blij dat je erbij bent! 🙌

Lees verder over data en de diensten van RBI-Solutions in deze blog's:

Vanaf 1 februari groeien we verder. Bouw jij mee?

Vanaf 1 februari groeien we verder. Bouw jij mee?

Terugkijkend op het afgelopen jaar hebben we mooie stappen gezet. We hebben veel van elkaar geleerd, verschillende opdrachten bij nieuwe klanten gestart en aan uitdagende projecten gewerkt. We hebben nieuwe collega’s aangenomen, samen gebouwd aan onze groei en natuurlijk ook veel plezier gemaakt.

We sluiten 2025 af met onze RBI kerstborrel. Maar we kijken ook vooruit. Vanaf 1 februari 2026 zijn we op zoek naar 2 medior data-analisten die zin hebben om mee te bouwen aan onze groei.

Fijne feestdagen!

Fijne feestdagen!

Afgelopen vrijdag hebben we samen met het hele team kerst gevierd bij Brava, een café om de hoek van ons kantoor. We hebben heerlijk geborreld, het jaar met elkaar afgesloten en natuurlijk ook onze kerstcadeaus uitgepakt. Dit jaar was een RBI-kersttrui onderdeel van het kerstpakket.

Zonder businessdoelen geen duurzame data-architectuur

Zonder businessdoelen geen duurzame data-architectuur

Vorige week gaf ik met veel enthousiasme een introductie over data-architecturen aan nieuwe collega’s. We bespraken de historie van architecturen, de plek van een Data Architectuur binnen een Enterprise Architectuur en hoe zo’n architectuur het werk van Data Engineers, Data Analisten en Data Scientists beïnvloedt. Data Architectuur wordt vaak gezien als een IT-feestje, maar een goede architectuur wordt altijd gedreven door heldere businessdoelen. Zonder die doelen is een data platform als een Ferrari bij een off-road rally: technisch en esthetisch indrukwekkend, maar totaal ongeschikt voor het terrein waarin het moet presteren. Zo verliest een architectuur zonder richting snel zijn waarde en wordt data engineering meer een technologisch experiment dan een strategisch fundament.

MCP: De nieuwe AI standaard

MCP: De nieuwe AI standaard

Een begrip dat je online steeds vaker tegenkomt binnen al de buzz rond AI is ‘MCP’; weer zo’n afkorting die voor heel veel mensen cryptisch klinkt. Binnen de AI wereld is het echter wel een heel belangrijke vooruitgang: standaardisatie. Het verbinden van AI met bestaande APIs biedt heel veel mogelijkheden. Echter bouwt elke organisatie hun oplossing net weer anders. De ene bot praat zo tegen een API, de andere weer anders, en voor je het weet heb je een kerkhof aan connectors. Het idee is goed, de uitvoering vaak rommelig. Dit is precies waar MCP om de hoek komt kijken.

AI Agents: meer dan een slimmere chatbot

AI Agents: meer dan een slimmere chatbot

De meeste mensen zien AI nog steeds als een soort papegaai die tekstjes en plaatjes maakt zodra je iets vraagt. Handig, maar ook best oppervlakkig. Sinds enige tijd is er echter ook iets nieuws in opkomst: ‘Agentic AI’. AI-agenten dus die autonoom te werk kunnen gaan.

In plaats van pure generatie, kunnen ze een probleem ontleden, stappen zetten richting een oplossing, hun eigen werk checken en zelf andere tools gebruiken. We stappen dus richting zelfstandig werkende oplossingen. Je kunt het bijna zien als een leger van volledig virtuele assistenten en stagiaires. Dit belooft veel maar, brengt zeker ook gevaren.

AutoML: Machine Learning op de automatische piloot?

AutoML: Machine Learning op de automatische piloot?

Geautomatiseerd Machine Learning ook wel ‘AutoML’ is het automatiseren van de tijdrovende, iteratieve taken bij het ontwikkelen van machine learning-modellen. Je laat als het ware het bouwen van de modellen aan de machines zelf over.

Voor een paar tientjes een model dat kan voorspellen welke klanten over een paar maanden gaan vertrekken. Klinkt een beetje te goed om waar te zijn. Dan heb je natuurlijk ook geen Data Scientists meer nodig, toch? Nou, er zitten uiteraard wel wat haken en ogen aan. De specialisten op het gebied van Machine Learning verdwijnen ook zeker niet zo maar. Even een stap terug dus.

Data mesh: principes en praktische implementatie

Data mesh: principes en praktische implementatie

Elk relatief groot bedrijf bestaat uit verschillende afdelingen, elk met zijn eigen vraagstukken. Op datagebied is dat niet anders: marketing wil weten hoe campagnes performen, operations wil de huidige voorraad kunnen inzien, finance bewaakt de cashflow en productontwikkeling volgt klantgedrag.

Datamigratie afgerond… en nu?

Datamigratie afgerond… en nu?

Binnen veel organisaties is een datamigratie een enorme mijlpaal. Maandenlang werk je toe naar dat ene moment waarop alle data succesvol is overgezet naar de nieuwe operationele applicatie. Tijdens dat migratietraject worden allerlei controles ingericht: validatieregels, datakwaliteits­checks en integriteitscontroles die ervoor zorgen dat iedere klant, transactie of productrecord correct wordt overgezet. In de praktijk zien we alleen dat die regels direct na de migratie verdwijnen uit beeld. Terwijl ze juist ook dan van grote waarde zijn.

Meggie over haar werk bij de klant

Meggie over haar werk bij de klant

Meggie van den Boom, data engineer bij RBI Solutions, werkt al anderhalf jaar als data consultant bij een financiële dienstverlener. Ze geeft ons vandaag een kijkje in hoe haar werkzaamheden binnen haar team bij de klant eruit zien.

Metadata: je geheime wapen voor observability & governance

Metadata: je geheime wapen voor observability & governance

Metadata voor observability en governance: verder dan information_schema
Een aantal weken geleden, wijdden we een blog aan het gebruik van metadata voor het slimmer ontwikkelen en onderhouden van dataplatforms. Metadata wordt helaas nog vaak gezien als het saaie bijproduct van data: een paar kolomnamen, datatypes en misschien een timestamp, maar in moderne dataplatformen is dat nog maar het topje van de ijsberg. Metadata kan, mits goed benut, een krachtig fundament vormen voor zowel observability als governance. Het kan helpen bij het opsporen van problemen, het begrijpen van datastromen, het garanderen van compliance en zelfs het optimaliseren van prestaties.

Data migratie test en validatiestrategieën: hoe je zeker weet dat je data klopt na een migratie

Data migratie test en validatiestrategieën: hoe je zeker weet dat je data klopt na een migratie

Data migraties zijn voor veel organisaties een uitdaging: je stapt over van een oud systeem naar een nieuw, je moderniseert je datawarehouse of je integreert een nieuw platform na een fusie. Ondanks dat het technisch ‘slechts’ het verplaatsen van data lijkt, komt er meer bij kijken om een goede datamigratie uit te voeren. Hoe weet je zeker dat de data na migratie nog klopt? Dat er niets verloren is gegaan, of erger nog: dat je geen subtiele fouten hebt geïntroduceerd die maanden later pas boven water komen?
In deze blog staan we stil bij test- en validatiestrategieën bij data migraties. We bespreken waarom het testen van een datamigratie fundamenteel anders is dan het testen van een standaard applicatie, welke technieken je kunt gebruiken om betrouwbaarheid te garanderen, en hoe je omgaat met de praktische uitdagingen die je onderweg tegenkomt.

Waarom AI en automatisering niet werken zonder goede data engineering

Waarom AI en automatisering niet werken zonder goede data engineering

AI is hot. Iedereen wil er iets mee. Van slimme voorspellingen tot volledige automatisering van bedrijfsprocessen; organisaties investeren massaal in artificial intelligence. Maar wie verder kijkt dan de hype, ziet dat veel AI-projecten stranden nog voordat ze echt waarde opleveren. Niet vanwege de modellen of de tooling, maar vanwege iets veel fundamentelers: de onderliggende data en hoe je ermee omgaat. Of specifieker: de data engineering erachter. Want zonder robuuste data-infrastructuur is AI net zo betrouwbaar als een kompas in een magneetveld.